If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+40d+8=0
a = 1; b = 40; c = +8;
Δ = b2-4ac
Δ = 402-4·1·8
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-28\sqrt{2}}{2*1}=\frac{-40-28\sqrt{2}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+28\sqrt{2}}{2*1}=\frac{-40+28\sqrt{2}}{2} $
| 367x+1500=16600 | | 2c+19=7c-6c+3 | | 18.9-5.8q=-9.3q | | 6a=12=2a-16 | | x+15=5(15)-45 | | 9y+8=13y-16 | | 8+9s=10 | | m/5=7/5 | | 15y-13=-5y+67 | | 20/x+5=5/8 | | -16.87+11.2p=-3.89+13.4p | | 5y2=20 | | x/3-1=1/2 | | 3x+7x=6x+16 | | x+(x*0.2)=5000 | | 9=10+k | | 12-13s=-12s | | x+x*0.2=5000 | | 2b+9=3b | | -18-6y-2y=18+10y | | 61-18b=-11 | | 2x=5=-4 | | 2x=5=4 | | x/6+1/12=1/4 | | 1/5x-6=3/4 | | 0.907=(86.22*x)/271 | | -16.81-6.2h=-4.6h+4.31 | | 2,5x-8=5x+12 | | 1/2h-6=2 | | -15.3n=12-13.8n | | -19b+12=-14-17b | | -20+16j=20-4j |